Уравнение и его корни

7 370
31 октября 2022 г.
Время чтения:  7 минут

Основные понятия уравнения

Определение

Уравнением называют равенство, в котором одна из переменных неизвестна, и её нужно найти. Значение этой неизвестной должно быть таким, чтобы равенство было верным.

К примеру: 3+4=7 это числовое равенство, при вычислении которого с левой стороны получается 7=7.

Уравнением же будет называться следующее равенство: 3+х=7, поскольку есть неизвестная переменная х, её значение можно найти.

Из этого уравнения следует, что переменная х=4, только при таком его значении равенство 3+х=7, будет верным.

Неизвестные переменные принято писать в виде маленьких латинских букв, можно любыми, но чаще используют x,y,z.

Получается, чтобы равенство сделать уравнением необходимо, чтобы в нем была буква, значение которой неизвестно.

Как мы понимаем существует множество примеров уравнений с разными арифметическими действиями.

Пример: х + 5 = 1= 9; z — 2 = 7; 9 * y = 18, 6 :  f = 2

Помимо этого существуют уравнения со скобками. К таким уравнениям относится 8 : (х — 4) = 2 * (8 — х), неизвестных может быть несколько, они могут быть, как слева уравнения, так и справа или в обеих частях.

Помимо таких простых уравнений они могут быть с корнями, логарифмами, степенями и тд. 

Уравнение может содержать несколько переменными, тогда их принято называть, соответственно уравнениями с двумя, тремя и более переменными.

Пример:

3 * а = 15 : х — уравнение с двумя переменными:

8 — а = 5 * х — z — уравнение с тремя переменными.

Корень уравнения

Мы часто слышим фразу на уроках математики, «найдите корень уравнения», давайте разберёмся, что же это значит.

Пример:

В примере 3+х=7, можно представить вместо буквы число, и уравнение тогда станет равенством, оно может быть либо верным, либо неверным, если поставить х=3, то первичное равенство примет вид 3+3 = 7 и станет неверным, а если х= 4 то равенство 3+4=7 будет верным, а значит х = 4 будет называться корнем или по другому решением уравнения 3+х=7.

Определение.

Отсюда можно выделить следующее определение: корень уравнения — это такое значение неизвестной переменной, при котором числовое равенство будет верным.

Стоит отметить, что корней может быть несколько или не быть вовсе.

Рассмотрим подробнее пример который не будет иметь корней. Таким примером станет 0 * х = 7, сколько бы чисел мы сюда не подставляли равенство не будет верным, так как умножая на ноль будет ноль, а не 7.

Но существуют и уравнения с множественным числом корней, к примеру, х — 3 = 6, в таком уравнении только один корень 9, а в уравнении квадратного вида х2 = 16, два корня 4 и -4,  можно привести пример и с тремя корнями х * (х — 1) * (х — 2) = 0,  в данном случае три решения ноль, два и один.

Для того чтобы верно записать результат уравнения мы пишем так:

  • Если корня нет, пишем уравнение корней не имеет;
  • Если есть и их несколько, они либо прописываются через запятые, либо в фигурных скобках, например, так: {-2, 3, 5};
  • Еще одним вариантом написания корней, считается запись в виде простого равенства, к примеру неизвестная х а корни 3,5 тогда результат прописывается так: х=3, х=5. 
  • или прибавляя индекс снизух1 =3 , х2 = 5. данным способом указывается номер корня;
  • Если решений уравнения бесконечное множество, то запись будет либо в виде числового промежутка от и до, или общепринятыми обозначениями. множество натуральных чисел N, целых –  Z, действительных — R.

Стоит отметить, что если уравнение имеет два и более корней, то чаще употребляется понятие решение уравнения.  Рассмотрим определение уравнения с несколькими переменными.

Решение уравнения с двумя и более переменными, означает, что эти несколько значений превращают уравнение в верное равенство.

Примеры:

Представим, что мы имеем следующее уравнение х + а = 5, такое уравнение имеет две переменные. Если мы поставим вместо них числа 3 и 6 то равенство не будет верным, соответственно и данные числа не являются решением для данного примера.  А если взять числа 2 и 3 то равенство превратится в верное, а числа 2 и 3 будут решением уравнения. Представленные уравнения с несколькими переменными, тоже могут или не иметь корня вообще или наоборот иметь множество решений.

Правила нахождения корней

Таких правил существует несколько рассмотрим их ниже.

Пример 1 

Допустим мы имеем уравнение 4 + х = 10, чтобы найти корень уравнения или значение  х в данном случае необходимо  найти неизвестное слагаемое, для этого есть следующее правило или формула. Для нахождения неизвестного слагаемого, нужно из суммы вычесть известное значение.

Решение:

х = 10 — 4

х = 6

Чтобы проверить является ли 6 решением, мы ставим его на место неизвестной переменной х в исходное уравнение, получаем следующее равенство 4 + 6 = 10, такое равенство является верным, что означает число корня уравнения, равно 6.

Пример 2

Возьмём уравнение вида х — 5 = 3, в данном примере х это неизвестное уменьшаемое, для того чтобы его найти необходимо следовать следующему правилу:

Для нахождения уменьшаемого необходимо сложить разность и вычитаемое.

Решение:

х = 3 + 5

х = 8

Проверяем правильность нахождения корня уравнения, подставляем, вместо переменной неизвестной, найденное число 8, получаем равенство 8 — 5 = 3, так как оно верное, то и корень уравнения найден правильно.

Пример 3

Берём уравнение, в котором неизвестное х будет вычитаемое к примеру: 8 — х = 4. для того чтобы найти х необходимо воспользоваться правилом:

Для нахождения вычитаемого, нужно из уменьшаемого вычесть разность.

Решение:

х = 8 — 4

х = 4

Проверяем правильность нахождения корня уравнения, для этого полученное значение ставим вместо неизвестного вычитаемого в исходный пример, и получаем следующее равенство 8 — 4 = 4, равенство верно, значит и корень найден правильно.

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

Пример 4

Возьмём уравнение вида х * 3 = 9, в данном уравнении неизвестна переменная х, является множимым. Для того, чтобы найти корень такого уравнения необходимо использовать следующее правило.

Для нахождения неизвестного множимого, нужно произведение разделить на множитель.

Решение:

х = 9 : 3

х = 3

Для проверки подставим найденное значение х в исходное уравнение, получим равенство 3 * 3 =9, так как равенство является верным, то и решение уравнения верное.

Такое же правило действует и для множителя, чтобы его найти необходимо произведение разделить на множимое.

Пример 5

Возьмём уравнение следующего вида: х : 2 = 10 , в данном уравнении х- это неизвестное делимое, 2 — делитель, а 10 — частное. Для нахождения неизвестного значения х, воспользуемся правилом:

Чтобы найти делимое, необходимо частное умножить на делитель.

Решение:

х = 10 * 2

х = 20

Проверим, вместо неизвестного х, поставим его значение 20, получим следующее равенство 20: 2 = 10. Равенство верное, значит и решение было верным.

Пример 6

Теперь рассмотрим пример с делителем.

Возьмём уравнение 22: х = 11, где х неизвестный делитель. Для того чтобы его найти существует правило:

При нахождении неизвестного делителя нужно делимое разделить на частное.

Решение:

х = 22 : 11

х = 2

Проверяем, 2 ставим на место неизвестного х в исходное уравнение, получаем равенство 22 : 2 = 11. Так как равенство верно, то мы нашли верный корень уравнения.

Пример применения правил в более сложном уравнении: 2х — 5 =5

Решение:

2х = 5 + 5

2х = 10

х = 10 : 2

х = 5

Проверяем, для этого полученное значение х = 5, ставим в исходное уравнение, получаем равенство 2 * 5 — 5 = 5, так как равенство верно, корень найден правильно.

Квадратные уравнения

Существует также уравнения квадратного вида, например: 2х2 = 32, для того, чтобы найти неизвестное или корень квадратного уравнения, в таком уравнении необходимо:

Решение:

х2 = 32 : 2

х2 = 16

х = √16

х = 4

Проверим, для этого полученное значение подставим в исходное уравнение, и получим равенство 242 = 32. так как равенство верное, то и решение уравнения верно.

Как мы видим нахождение корня уравнения не такой сложный процесс, главное запомнить правила. Стоит отметить, что помимо решения различного вида задач, уравнения применяются в других различных науках. Применение уравнений можно найти в экономике, в физике, химии, биологии и других. При их помощи можно вычислить и описать процессы, происходящие вокруг нас.

Калькулятор квадратных корней

Выполнение любых работ по математике

Контрольная работа по финансовой математике
4.9 из 5
1570 отзывов
от 535 руб.
от 3 часов
Подробнее
Контрольная работа по дискретной математике
4.9 из 5
1570 отзывов
от 535 руб.
от 3 часов
Подробнее
Курсовая работа по дискретной математике
4.7 из 5
910 отзывов
от 1970 руб.
от 1 дня
Подробнее

Популярные статьи

Примеры решения матриц с ответами

Уравнение плоскости

Общее уравнение плоскости

Метод Крамера

Метод Крамера – теорема, примеры решений

Как написать практическую часть диплома?

Нахождение площади фигуры ограниченной линиями y=f(x), x=g(y)