Нахождение неизвестного слагаемого, множителя: правила, примеры, решения

2 655
23 января 2023 г.
Время чтения:  5 минут

Мы научим решать уравнения быстро и быть уверенными в правильном и успешном результате. Для начала, выучим простые правила и рассмотрим примеры. Самый лёгкий тип уравнений — это у которых слева размещена разность, произведение, частное или сумма чисел и одно неизвестное, а справа — известное число. Если проще, нам надо найти в уравнении одно неизвестное. Неизвестное делимое с делителем, слагаемое или уменьшаемое с вычитаемым. Такие типы уравнений мы рассмотрим далее в статье.

Распишем основные правила для поиска неизвестных слагаемых, множителей, делимых и так далее. Для закрепления теории, мы подобрали конкретные примеры под каждое правило и каждую ситуацию, с которой вы можете столкнуться при решении уравнений такого типа.

Как найти неизвестное слагаемое, правило

Представим, что на столе стоит две вазы. В этих вазах в общей сложности лежит 7 яблок. В одной вазе лежит 2 яблока. Как узнать сколько яблок лежит во второй вазе и есть ли они там вообще? Посмотрим, как выглядит эта задача в математическом виде, отметив неизвестное число яблок во второй вазе как x. Согласно условиям выше, это неизвестное вместе с числом 2 образовывают 7. Значит, наше уравнение будет выглядеть как: 2 + x = 7. Справа имеем значение суммы, а слева — сумма чисел с одним неизвестным слагаемым. Для решения уравнения надо найти число x. В таких случаях используют правило:

Правило 1

Чтобы найти неизвестное слагаемое в уравнении, надо из суммы вычесть известное.

В ситуации, где происходит математическое нахождение неизвестного слагаемого, вычитание является обратный действием по смыслу, относительно сложения. Другими словами, между действиями вычитания и сложения есть математическая связь, и правило нахождения неизвестного слагаемого благодаря этой связи можно отобразить в буквенном виде: если в условии a + b = c, то c − b = a и c − a = b. А если вы видите обратные примеры, такие как c − a = b и c − b = a, то можете быть уверенны в том что a + b = c. Благодаря определению и математической связи, мы можем узнать неизвестное слагаемое, имея только его сумму с известным слагаемым. От перестановки слагаемых, значение не меняется, поэтому неважно какое надо найти слагаемое — первое или второе. Давайте используем это правило на практике, для лучшего понимания теории.

Пример 1

Давайте решим уравнение, которое мы составили выше: 2 + x = 7. С учётом правила, мы должны из суммы обоих слагаемых, 7, вычесть известное, 2. В решении это будет выглядеть так: 7  2 = 5.

В решении математических задач и примеров очень важно знать и использовать правильный алгоритм записи таких уравнений:

  1. Запишем исходное уравнение, на базе математической задачи.
  2. Применяем подходящее правило и записываем следующее уравнение на его основании.
  3. Записываем финальное уравнение, где указываем значение ранее неизвестного.

Запись решения по этой последовательности, отображает последовательные замены изначального уравнения равносильными ему по значениям. В итоге мы сможем увидеть в решении весь процесс нахождения неизвестного. Правильная форма записи нашего уравнения будет в виде такого решения:

2 + x = 7,

x = 7  2,

x = 5.

Четвертой строкой в решении примера может стать проверка решения, которая даст уверенность в правильности найденного ответа. Подставим найденное значение в исходное уравнение. Берем число 5 и подставляем в пример 2 + x = 7. У нас получится:

2 + 5 = 7.

Так как мы получили правильное исходное уравнение, значит мы решили пример верно. Если бы у нас получило неверное равенство в проверочном примере, например, 2 + 8 = 7, мы бы вернулись к первому пункту алгоритма решения примера. Неверное равенство при проверке указывает на допущенную ошибку в расчётах или неверно подобранном или использованном правиле.

Находим неизвестное уменьшаемое или вычитаемое

Итак, в математических примерах в процессе вычитания и сложения существует нерушимая связь. Эта связь сформулировала правила, благодаря которым можно быстро найти неизвестное — уменьшаемое, если нам известны разность и вычитаемое, или вычитаемое, если мы знаем разность и уменьшаемое. Для каждого случая есть правило, которое мы сейчас рассмотрим вместе с решением примера.

Правила 2 — 3 + примеры

Если прибавить к разности вычитаемое, получим неизвестное уменьшаемое.

Возьмем для примера уравнение x  1 = 4. В качестве неизвестного сейчас выступает уменьшаемое. Исходя из правила выше, мы к разности 4 добавляем вычитаемое 1. В сумме получаем 5. Значит, изначальное неизвестное уменьшаемое равно 5. Запишем решение по правильному алгоритму:

x  1 = 4,

x = 4 + 1,

x = 5.

Не лишним будет проверить правильность решения примера путём подстановки найденного числа 5 в исходный пример:

5  1 = 4.

Мы получили верное уравнение, значит решение правильное. Можно переходить к изучению следующего правила.


Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Используем это правило для нахождения неизвестного вычитаемого в примере 5  x = 2. Для решения этого уравнения мы определили, что неизвестное является вычитаемым, а значит, в этом случае будем использовать Определение 3. Вычтем из числа 5 известную разность 2 и получим 5  2 = 3. Вот так выглядит полная правильная запись решения:

5  x = 2,

x = 5  2,

x = 3.

Давайте убедимся, что мы правильно решили уравнение. Для этого подставим найденное число в исходный пример.

5  3 = 2.

Полученное уравнение верное, значит мы правильно нашли неизвестное вычитаемое. Теперь, когда вы выучили базовые правила нахождения неизвестных, мы поделимся с вами более простым способ решения примеров. Для нахождения неизвестного, нам нужно перенести неизвестное по одну сторону знака равности в уравнении, чаще левую, а известные — по другую, например, правую. При этом, когда переносите известное или неизвестное через знак равности, меняете его знак на противоположный. Если на одной из сторон ничего не остаётся, значит там будет стоять число 0. Мы покажем, как это работает на практике.

Есть пример 5 – x = 2, перенесём известные по правую сторону от знака уравнения:

– x = 2 – 5

При решении, получим уравнение:

– x = – 3

Так как в уравнениях всегда ищется неизвестное с положительным знаком, сменим знаки на противоположные в обеих частях уравнения, как бы перенося известное и неизвестное через знак равности, получим:

x = 3

Как видим, найденное значение неизвестного вычитаемого совпадает с тем значением, которое мы нашли при использовании Определения 3. Правило переноса чисел через знак равности со сменой их знака на противоположный работает для всех уравнений без исключения. Можем использовать это правило вместо всех вышеперечисленных.

Находим неизвестный множитель

Рассмотрим два уравнения: 3 ⋅ x = 9 и x ⋅ 2 = 6. И в первом, и во втором примере нужно найти один из неизвестных множителей. Второй множитель и производное — известны. Давайте запомним правило для решения подобных примеров.

Правило 4 + пример

Чтобы найти неизвестный множитель, нужно разделить производное на другой, известный множитель. Смысл этого правила базируется на обратном смысле к операции умножения. Между операциями деления и умножения также есть связь, которая выражается в следующем: если a  b = c и при этом ни a, ни b не равны 0, то c :   a = b и, наоборот, c :   b = a.

Найдём неизвестный множитель из уравнения 3  x = 9 путём деления известного частного 9 на известный множитель 3. Запишем решение по алгоритму:

3  x = 9,

x = 9 : 3,

x = 3.

Выполним подстановку, чтобы проверить правильность результата:

3  3 = 9

Уравнение правильное, это значит, мы верно установили значение неизвестного множителя. Обратите внимание, правило невозможно использовать в случае, если известный множитель равен 0. К примеру, если вам попадётся уравнение x  0 = 8, вы не сможете его решить с помощью этого правила. Само уравнение x  0 = 8 бессмысленно, так как для его решения нужно было бы разделить 8 на 0, а делить на 0 нельзя.

Подобные ситуации детально рассмотрены в статье о линейных уравнениях. В случае использования Определения 4, по факту мы делим обе части примера на известный множитель, за исключением 0. Согласно более сложному правилу, мы можем делить обе части уравнения на любой множитель, отличный от 0 и это не повлияет на правильность уравнения и на значение его корня. Оба правила согласованы между собой и отражают математическую связь между обеими частями уравнения.

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

Находим неизвестный делитель или делимое

Последний случай, с которым вы можете столкнуться в решении простых математических примеров — как найти неизвестное делимое при известном частном и делителе, и наоборот, как найти делитель, если из уравнения известно значение только делимого и частного. Используя знакомую связь между делением и умножением, сформируем правило для решения подобных примеров.

Правило 5 + пример

Если мы ищем неизвестное делимое, то умножаем частное на делитель. Давайте рассмотрим, как использовать правило при решении практических примеров.

Возьмем для решение уравнение типа x : 2 = 4. Перемножаем делитель 2 и частное 4 между собой, получаем ответ 8. Вот мы и нашли неизвестное делимое. Последовательная запись решения будет выглядеть в виде:

x : 2 = 4,

x = 4 · 2,

x = 8.

Также запишем проверочный пример, подставив найденное делимое 8 в исходное уравнение:

8 : 2 = 4.

Правильность проверочного уравнения указывает на правильность найденного ответа.

Определение 5 можно связать с умножением обеих частей уравнения на один и тот же множитель, отличный от 0. Такие изменения в примере никаким образом не повлияют на корни обеих частей уравнения или итоговое значение его неизвестного. Давайте ознакомимся со следующим правилом.

Правило 6 + пример

Чтобы найти неизвестный делитель, нужно делимое разделить на известное частное. Разберем простой пример ниже.

Возьмём уравнение 10 : x = 5. Разделим делимое 10 на известное частное 5. Получим ответ 2, что и будет значением неизвестного делителя в этом уравнении. В любом случае, уравнение нельзя решать в уме, а нужно обеспечить запись процесса решения по алгоритму:

10 : x = 5,

x = 10 : 5,

x = 2.

Завершаем решение примера проверкой результата:

10 : 2 = 5.

Мы получили верное уравнение, значит нашли корень правильно. Обратите внимание, если частное равно 0, мы не может применять это Определение, так как придётся делить делимое на 0. И в таком случае найти делимое невозможно. Но число 0 может выступать в роли частного в уравнении 0 : x = 0. В этом случае, неизвестное x может быть любым положительным или отрицательным числом, то есть равняться бесконечному количеству вариантов значения.

На практике вы будете встречать более сложные примеры и задачи на нахождение неизвестного слагаемого, вычитаемого или множителя/делимого, в которых будете последовательно применять вышеперечисленные правила.

Выполнение любых работ по математике

Контрольная работа по финансовой математике
4.9 из 5
1570 отзывов
от 535 руб.
от 3 часов
Подробнее
Контрольная работа по дискретной математике
4.9 из 5
1570 отзывов
от 535 руб.
от 3 часов
Подробнее
Курсовая работа по дискретной математике
4.7 из 5
910 отзывов
от 1970 руб.
от 1 дня
Подробнее

Популярные статьи

Примеры решения матриц с ответами

Уравнение плоскости

Общее уравнение плоскости

Метод Крамера

Метод Крамера – теорема, примеры решений

Как написать практическую часть диплома?

Нахождение площади фигуры ограниченной линиями y=f(x), x=g(y)