Вычитание векторов. Как найти разность векторов

5 523
31 октября 2022 г.
Время чтения:  2 минуты

Для того, чтобы уяснить, что собой представляет разность векторов, введём понятие откладывания вектора от определённой точки и понятие суммы векторов.

Определение

Если некоторая точка A является началом вектора a, то говорят, что он является отложенным от точки A.

Теорема. От каждой точки можно отложить только один вектор, имеющий заданный модуль и направление. Докажем эту теорему.

Доказательство:

В случае, когда вектор нулевой, то теорема очевидна. Нулевые вектора в одной и той же точки совпадают между собой, т. е. являются одним и тем же вектором.

Сделаем построение. Точкой A обозначим начало вектора a, а точкой B его конец. Пусть у нас имеется некоторая точка K. Проведём через неё прямую b, которая параллельна вектору a. Отложим на данной прямой равные по своей абсолютной величине вектору a отрезки KL и KM. Из векторов, образованных этими отрезками искомым можно назвать только сонаправленный с a.

Векторы 1

Единственность нашего вектора следует из того, что мы построили и видим.

Теорема доказана.

Определение

Суммой векторов a и b называется вектор с тем же началом, что вектор a и концом, как у вектора b. При этом вектор b должен начинаться в той же самой точке, в которой заканчивается вектор a.

Равные векторы, начинающиеся в разных точках, нередко обозначают одной и той же буквой. Иногда про подобные векторы говорят, как об одном и том же векторе, отложенном из разных мест.  

Разность векторов

Определение

Разностью векторов a и b называется сумма вектора a c вектором, который противоположно направлен к вектору b.

По-другому это определение можно сформулировать следующим образом: разностью двух векторов a и b называется вектор c, который при сложении с вычитаемым b образует уменьшаемое, т. е. вектор a.

Формулами это записывается так:

b + c = a

a  b = c

Как найти разность векторов аналитическим способом

В двухмерном пространстве векторов a {x1, y1} и b {x2, y₂} разность векторов можно вычислить, как показано ниже:

c {x3, y3} = {x₁ — x2, y1 — y₂}.

Вычитание векторов в 3-мерном пространстве выглядит следующим образом:

c {x3; y3; z₃} = {x₁ — x2, y₂ — y₂, z1 — z2}.

Как найти разность векторов графическим способом

Нужно воспользоваться правилом треугольника. Последовательность действий следующая:

  1. Постройте по координатам векторы, для которых требуется найти разность;
  2. Совместите концы построенных векторов. Для этого нужно построить два равных заданным направленных отрезка, концы у которых будут в одной и той же точке;
  3. Соедините начала построенных отрезков и укажите их направление. Вектор c, называемый разностью векторов, будет иметь своё начало в той же точке, где начинается вектор, именуемый уменьшаемым и заканчивается в точке начала вычитаемого. Смотрите рисунок ниже.
Векторы 2

Есть ещё один способ графического нахождения разности векторов. Он предусматривает следующий порядок действий:

  1. Постройте исходные направленные отрезки;
  2. Отразите вычитаемый отрезок. Для этого постройте противоположно направленный и равный ему отрезок и затем совместите начало этого отрезка с уменьшаемым;
  3. Постройте сумму, т. е. соедините начало первого отрезка и конец второго.
Векторы 3

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

Примеры вычисления разности векторов

Примеры

Вычислить вектор c, который представляет собой разность вектора a ={1;
2} и вектора b = {4; 8}.

Решение:

Действуем по выше указанному правилу

ab = {1 — 4; 2 — 8} = {-3; -6}

Ответ: с{-3; -6}.


Вычислить вектор c, который является разностью векторов a = {1; 2; 5} и
b = {4; 8; 1}.

Решение:

Почти всё делается, как в уже рассмотренном примере, только добавляется третья координата.

a — b = {1 — 4; 2 — 8; 5 — 1} = {-3; -6; 4}

Ответ: c {-3; -6; 4}.


На рисунке векторы

Векторы 4

Требуется построить разности: pn, m
n,mnp и найти ту из них, которая
имеет наименьший модуль.

Решение:

Для изображения p — n проще всего воспользоваться правилом треугольника. Параллельным переносом
отрезки
следует соединить таким образом, чтобы совпали их конечные точки. Далее нужно соединить начальные точки и
определить направление. В нашем случае вектор разности берёт своё начало там же, где и вычитаемый n.

Векторы 5

Для изображения m — n правильнее будет воспользоваться вторым графическим способом нахождения разности
векторов. Сначала построим вектор противоположный n и найдём его суммы с вектором m.

Векторы 6

Для нахождения разности m — n — p разобьём это выражение на два действия. Возможны следующие варианты:

  • m — (n + p). Сначала нужно построить сумму,
    затем уже вычесть её из m;
  • (m n) — p. Сначала находим m — n,
    осле этого от полученной разности отнимаем p;
  • (mp) — n. Сначала определяем m — p, затем от
    полученного результата отнимаем n.

Из вычислений выше нам известна разность m — n. Для получения решения нам нужно вычесть из неё
p.
Используя определение 3 построим разность векторов на рисунке. На нём изображён окончательный результат
и промежуточный.

Векторы 7

Теперь нужно определить наименьший модуль. В нашем случае для этого можно лишь визуально оценить длины p — n,
m — n и m — n — p. Из построения сразу видно, что наименьшим модулем обладает вектор разности m — n —
p
.

Выполнение любых работ по математике

Контрольная работа по финансовой математике
4.9 из 5
1570 отзывов
от 535 руб.
от 3 часов
Подробнее
Контрольная работа по дискретной математике
4.9 из 5
1570 отзывов
от 535 руб.
от 3 часов
Подробнее
Курсовая работа по дискретной математике
4.7 из 5
910 отзывов
от 1970 руб.
от 1 дня
Подробнее

Популярные статьи

Примеры решения матриц с ответами

Уравнение плоскости

Общее уравнение плоскости

Метод Крамера

Метод Крамера – теорема, примеры решений

Как написать практическую часть диплома?

Нахождение площади фигуры ограниченной линиями y=f(x), x=g(y)