Многочлен, его стандартный вид, степень и коэффициенты членов

2 179
28 апреля 2023 г.
Время чтения:  1 минута

Перед тем как говорить о многочленах давайте вспомним, что именуют одночленом. Так называют математическое выражение, состоящее из произведения числовых и буквенных множителей. Примеры одночленов: ac, abc, 4ab, 2bc3, 7x5c3 d.

Понятие многочлена

Многочленом называют сумму двух и более одночленов.
Членами многочлена называют одночлены, из которых он состоит.
Числа, которые стоят при буквах членов многочлена, называют его коэффициентами.
Примеры многочленов: \[7 a b c+b^{2} a d+9, a+b+c+d, 3 t^{5}+4 b\], \[a+2 b^{2}-c, 4-6 x y\].
Не удивляйтесь знаку минуса в выражениях. Любую разность легко представить в виде суммы. В частности, последние два выражения можно переписать как \[a+2 b 2+(-c), 4+(-6 x y)\].
Число ноль считают нулевым многочленом.
Понятия одночлена и многочлена пересекаются между собой, ведь любой одночлен является одновременно и многочленом. Его можно записать в виде суммы одночлена и нулевого многочлена.


Двучленом называется многочлен, который составляют два одночлена.
Примеры: \[a+b, b^{2}+a b, 3 a b c^{3}-a, a^{2}-4 a c, a^{2}-b c^{2}\].


Трёхчленом называется многочлен, который составляют три одночлена.
Примеры: \[b^{2}+a c-a, 3 a b c^{4}+4 a c, 3 a c^{3}-a+a^{2},-5 c+c^{2}, 7+a-9 c\].
Из ранее пройденного материала нам известно, что степенью одночлена называют сумму степеней всех его буквенных множителей.


Линейным многочленом называется тот, в котором все его члены не выше первой степени.
Примеры: \[2 x y-7 a, 3 a b+5 y+y, x y-9 a c,-2 a b+5 x+9 y\].


Подобными членами многочлена называются подобные слагаемые, из которых он состоит.
Например, в многочлене \[3 a^{2}+8 a c-a^{2}\] подобными являются \[3 a^{2}\] и \[-a^{2}\], в \[5 b^{7}+8 ac+b^{7}-4 a b c d\] подобными будут \[5 b^{7}\] и \[b^{7}\].

Многочлены стандартного вида

Из ранее пройденных тем известно, что одночленами стандартного вида называются те, в которых на первом месте стоит коэффициент, а затем идут буквенные множители.

Стандартным называют многочлен, состоящий их стандартных одночленов и при этом не содержащий подобных слагаемых.
Примеры стандартных многочленов: \[48 a^{3} b^{9}-6 x^{4} y^{5}, 18 x y-113 c^{3} x^{6}, 6 m n^{3}+15 a b c\].



Свободным членом многочлена называется многочлен нулевой степени, у которого нет буквенной части. Проще говоря, свободный член многочлена – входящее в него в качестве слагаемого число.
Свободным членом 3ab — 3с + 12х — 4 будет -4.
\[y x^{2}-6 m n+15\] свободный член равен 15.

Примеры

Представьте в виде многочлена стандартного вида математическое выражение 4x + 6xy2 + x – xy2.

Решение:

Приводим подобные слагаемые: 4x + x = 5x; 6xy2 — xy2 = 5xy2. В результате имеем 4x + 6xy2 + x – xy2 = 5x + 5xy2.

Ответ: 5x + 5xy2.


Привести 2x2y3 – xy3 – x4 – x2y3 + xy3 + 2x4 к стандартному виду.

Решение:

Приводим подобные слагаемые: 2x2 y3 — x2 y3 = x2 y3; — xy3 + xy3 = 0;

(-x4) +2x4 = x4

В результате получаем x2y3 + x4.

Ответ: x2y3 + x4.

Степень многочлена

Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов.



Степенью многочлена нестандартного вида называют степень многочлена соответствующего ему стандартного вида.

Для нахождения степени многочлена следует:

  1. Привести к стандартному виду все его члены;
  2. Привести к стандартному виду сам многочлен;
  3. Найти и выбрать одночлен с наибольшей из степеней.

Покажем сказанное на конкретных задачах.

Примеры

Узнать степень 6x + 4xy2 + x + xy2.

Решение: Выделяем подобные слагаемые. Это 6x + x =7x и 4xy2 + xy2 = 5xy2.

В результате имеем 7x + 5xy2. Это стандартный вид указанного многочлена.

Степень первого из его членов равна 1, второго 3. Так как 3 больше 1, степень нашего многочлена будет равна 3. Нельзя забывать, что единичная степень (таковая имеется у одночлена 7x) подразумевается, но не обозначается числом сверху.

Ответ: Степень 6x + 4xy2 + x + xy2 равна 3.


 

Узнать степень 6xx3 + 5xx2 − 3xx3 − 3x2x.

Решение: Находим стандартный вид одночленов: 6xx3 = 6x4,  у 5xx2 = 5x3, у 3x3 = 3x4,  3x2x = 6x2 .

В результате наше выражение приобретает вид 6x4 + 5x3 − 3x4 − 3x3.

Теперь приводим его к стандартному виду. Выделяем подобные слагаемые.

Это 3x3. -3x3, и 6x4, -3x4.

Наш многочлен начинает выглядеть как 3x4 – 2x3.

Сравниваем степени слагаемых, 4 больше 3.

Ответ: Степень 6xx3 + 5xx2 − 3xx3 − 3x2 x равна 4.

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

О разложении многочлена на множители

Примеры

Вынесение общего множителя за пределы скобок:

Разложить на множители многочлен xy + xz.

Решение:

Выносим x за скобки и получаем xy + xz = x(y+z).

Ответ: x(y+z).


 

Использование формул сокращённого умножения:

Разложить на множители (3xa – 2yb)2 .

Решение: Для разложения на множители воспользуемся формулой

(a-b)2 = a2 – 2ab + b2.

После её применения имеем:

9x2a2 – 6xyab + 4y2b2.

Ответ: 9x2a2 – 6xyab + 4y2b2.


 

Группировка:

Разложить на множители x3 – 5x2y – 3xy +15y2.

Решение:

x3 – 5x2y – 3xy +15y2 = (x3 – 5x2y) – (3xy — 15y2) =

= x2(x-5y) – 3y(x-5y) = (x2 – 3y)(x-5y).

Ответ: (x2 – 3y)(x-5y).


 

Выделение полного квадрата:

Разложить на множители x4 – 4x2 – 1.

Решение:

X4 – 4x2 – 1 = x4 – 2*2*x2 – 4 – 1 = (x2 -2)2 – 5 = (x2 – 2 + √5)(x2 – 2 + √5). В результате получили произведение двух многочленов.

Ответ: (x2 – 2 + √5)(x2 – 2 + √5).


 

Разложение квадратного трёхчлена на множители:

Метод базируется на теореме, согласно которой квадратное уравнение ax2 + bx +c = 0 с корнями x1 и x2 можно записать в виде a(x-x1)(x-x2).

Разложить на множители 2x2 + 5x -3.

Решаем уравнение 2x2 + 5x -3 = 0.

x1,2 = {5 +- √[52 – 4*2*(-3]}/2*2 = (-5+-7)/4;

x1 = ½; x2 =3;

2x2 + 5x -3 = 2(x-1/2)(x+3).

Ответ: 2(x-1/2)(x+3).

Выполнение любых работ по математике

Контрольная работа по финансовой математике
4.9 из 5
1570 отзывов
от 535 руб.
от 3 часов
Подробнее
Контрольная работа по дискретной математике
4.9 из 5
1570 отзывов
от 535 руб.
от 3 часов
Подробнее
Курсовая работа по дискретной математике
4.7 из 5
910 отзывов
от 1970 руб.
от 1 дня
Подробнее

Популярные статьи

Примеры решения матриц с ответами

Уравнение плоскости

Общее уравнение плоскости

Метод Крамера

Метод Крамера – теорема, примеры решений

Как написать практическую часть диплома?

Нахождение площади фигуры ограниченной линиями y=f(x), x=g(y)